ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-4710/5710: Computer Hardware Design Winter 2024

Unit 2 -Computer Arithmetic

INTEGER NUMBERS

UNSIGNED INTEGER NUMBERS
* n—bit number: b,_1b,_, ...by.
= Here, we represent 2" integer positive numbers from 0 to 2™ — 1.

SIGNED INTEGER NUMBERS

= n-bit number b,,_1b,,_; ... b1 by.

= Here, we represent integer positive and negative numbers. There exist three common representations: sign-and-magnitude,
1's complement, and 2's complement. In these 3 cases, the MSB always specifies whether the number is positive (MSB=0)
or negative (MSB=1).

= It is common to refer to signed numbers as numbers represented in 2's complement arithmetic.

SIGN-AND-MAGNITUDE (SM):

= Here, the sign and the magnitude are represented separately.

= The MSB only represents the sign and the remaining n — 1 bits the magnitude. With n bits, we can represent 2™ — 1 numbers.
= Example (n=4): 0110 = +6 1110 = -6

1'S COMPLEMENT (1C) and 2'S COMPLEMENT (2C):

= If MSB=0 — the number is positive and the remaining n — 1 bits represent the magnitude.

= If MSB=1 — the number is negative and the remaining n — 1 bits do not represent the magnitude.

= When using the 1C or the 2C representations, it is mandatory to specify the number of bits being used. If not, assume the
minimum possible number of bits.

1'S COMPLEMENT 2'S COMPLEMENT
Range of values 214+ 1to2n -1 2121 —1
Numbers represented 2" —1 n
II"FLVrﬁI’btél:g sign of a Apply 1C operatior: invert all bits Apply 2C operation: invert all bits and add 1
v +6=0110 — -6=1001 v +6=0110 — -6=1010
v’ +5=0101 — -5=1010 v’ +5=0101 — -5=1011
v’ +7=0111 — -7=1000 v +7=0111 — -7=1001
v If -6=1001, we get +6 by applying the 1C | v* If -6=1010, we get +6 by applying the 2C
operationto 1001 — +6 = 0110. operationto 1010 — +6 = 0110.
v" Represent -4 in 1C: We know that v" Represent -4 in 2C: We know that
+4=0100. To get -4, we apply the 1C +4=0100. To get -4, we apply the 2C
operation to 0100. Thus, -4 = 1011. operation to 0100. Thus -4 = 1100.
Examples v" Represent 8 in 1C: This is a positive v" Represent 12 in 2C: This is a positive number
number — MSB=0. The remaining n — 1 — MSB=0. The remaining n — 1 bits
bits represent the magnitude. represent the magnitude.
Magnitude (unsigned number) with a min. Magnitude (unsigned number) with a min. of
of 4 bits: 8=1000,. Thus, with @ minimum 4 bits: 12=1100,. Thus, with a minimum of
of 5 bits, 8=01000, (1C). 5 bits, 12=01100, (2C).
v" What is the decimal value of 1100? We v" What is the decimal value of 1101? We first
first apply the 1C operation (or take the 1's apply the 2C gperation (or take the 2's
complement) to 1100, which results in complement) to 1101, which results in
0011 (+3). Thus 1100=-3. 0011 (+3).Thus 1101=-3.
SUMMARY
* Representation of Integer Numbers with n bits: b,,_,b,_, ... b,.
UNSIGNED SIGNED (2C)
n-1 n-2
Decimal Value D= Z b; 2! D=-2"1p,_, + Z b; 2!
i=0 i=0
Range of values [0,2™ — 1] [—2n-1, 2771 — 1]
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= The following table summarizes the signed representations for a 4-bit number:

n=4: SIGNED REPRESENTATION
bsbabibo Sign-and-magnitude 1's complement 2’'s complement
0000 0 0 0
0001 1 1 1
0010 2 2 2
0011 3 3 3
0100 4 4 4
0101 5 5 5
0110 6 6 6
0111 7 7 7
1000 0 -7 -8
1001 -1 -6 -7
1010 -2 -5 -6
1011 -3 -4 -5
1100 -4 -3 -4
1101 -5 -2 -3
1110 -6 -1 -2
1111 -7 0 -1
Range for n bits: | [-(2"t—1),2"1—1] | [-(@"t—1),2"1—1] | [-2n 1 2n1—1]

= Keep in mind that 1C (or 2C) representation and the 1C (or 2C) operation are very different concepts.

= Note that the sign-and-magnitude and the 1C representations have a redundant representation for zero. This is not the case
in 2C, which can represent an extra number.

= Special case in 2C: If —2"! is represented with n bits, the number 2"~'requires n + 1 bits. For example, the number -8
can be represented with 4 bits: -8=1000. To obtain +8, we apply the 2C operation to 1000, which results in 1000. But
1000 cannot be a positive number. This means that we require 5 bits to represent +8=01000.

SIGN EXTENSION

= UNSIGNED NUMBERS: Here, if we want to use more bits, we just append zeros to the left.
Example: 12 = 1100, with 4 bits. If we want to use 6 bits, then 12 = 001100,.

= SIGNED NUMBERS:
v' Sign-and-magnitude: The MSB only represents the sign. If we want to use more bits, we append zeros to the left,
with the MSB (leftmost bit) always being the sign.
Example: -12 = 11100, with 5 bits. If we want to use 7 bits, then -12 = 1001100,.

v' 2's complement (also applies to 1C): In many circumstances, we might want to represent numbers in 2's complement
with a certain number of bits. For example, the following two numbers require a minimum of 5 bits:
10111, = =24 +22+ 21 +20=—9 01111, =23 +22+ 21 +20 = +15
What if we want to use 8 bits to represent them? In 2C, we sign-extend: If the number is positive, we append 0’s to the
left. If the number is negative, we attach 1’s to the left. In the examples, we copied the MSB three times to the left:
11110111, = =2* + 22+ 21 + 20 = —9 00001111, = 23 + 22 + 21 + 20 = +15

ADDITION/SUBTRACTION

UNSIGNED NUMBERS

Addition o

= The example depicts addition of two 8-bit numbers using binary
and hexadecimal representations. Note that every summation
of two digits (binary or hexadecimal) generates a carry when
the summation requires more than one digit. Also, note that co
is the carry in of the summation (usually, co is zero).

= The last carry (cs when n=8) is the carry out of the summation.
If itis *0’, it means that the summation can be represented with
8 bits. If it is ‘1’, it means that the summation requires more
than 8 bits (in fact 9 bits); this is called an overflow. In the
example, we add two numbers and overflow occurs: an extra O0x3F =
bit (in red) is required to correctly represent the summation. 0xC2 =
This carry out can also be used for multi-precision addition.
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Arithmetic Overflow:

= Suppose we have only 4 bits to represent binary numbers. Overflow

cout=0 0101 +

occurs when an arithmetic operation requires more bits than the bits  No Overflow 1001

we are using to represent our numbers. For 4 bits, the range is 0 to 15.

| cout=1 1011 +
E Overflow! l 0110

If the summation is greater than 15, then there is overflow. 1110 10001
= For n bits, overflow occurs when the sum is greater than 2" — 1. Also: overflow = ¢, = Coys- 01011 +
Overflow is commonly avoided by sign-extending the two operators. For unsigned numbers, sign- 00110
extension amounts to zero-extension. For example, if the summands are 4-bits wide, then we append
a 0 to both summands, using 5 bits to represent the summands (see figure on the right). > 10001
cout=0
= For two n-bits summands (cin=0), the result will have at most n + 1 bits (2" — 1 + 2" — 1 = 2"+1 — 2),
Subtraction:
= In the example, we subtract two 8-bit numbers in the binary CoOO0OO0Od-d - - O o+ o
: : : P L1 1 L 1 | | I 1 non n
(Binaty or hexadecimal) generates a borrow when the S S8
inary or hex i r rrow w _ _ _
difference is negative. So, we borrow 1 from the next digit so 0x3a 00111010 __ 3 A
. . s . Ox2F = 00101111 2 F
that the difference is positive. Recall that a borrow is an extra
1 that we need to subtract. Also, note that by is the borrowin  0x0B = 0 0 0 0 1 0 1 1 0 B
of the summation. This is usually zero.
= The last borrow (bs when n=8) is the borrow out of the ST TRNS TR
subtraction. If it is zero, it means that the difference is positive oo oo0o0868 g o' a8
and can be represented with 8 bits. If it is one, it meansthat gx3a = 0 0 1 11 0 1 0 - 3 A -
the difference is negative and we need to borrow 1 fromthe (o475 = 0 1 1 1 0 1 0 1 — 7 5
next digit. In the example, we subtract two 8-bit numbers, the
result we have borrows 1 from the next digit. 0xC5 =11000101 cC5

Subtraction using unsigned numbers only makes sense if the result is positive (or when doing multi-precision subtraction).
In general, we prefer to use signed representation (2C) for subtraction.

SIGNED NUMBERS (2C REPRESENTATION)

The advantage of the 2C representation is that the summation can be carried out using the same circuitry as that of the
unsigned summation. Here the operands can be either positive or negative.

The following are addition examples of two 4-bit signed numbers. Note that the carry out bit DOES NOT necessarily indicate
overflow. In some cases, the carry out must be ignored, otherwise the result is incorrect.

+5 = 0101 + -5 = 1011 + +5 = 0101 + -5 = 1011 +
+2 = 0010 +2 = 0010 -2 = 1110 -2 = 1110
+7 = 0111 -3 = 1101 +3 =%X0011 -7 =%1001
cout=0 cout=0 cout=1 cout=1

Now, we show addition examples of two 8-bit signed numbers. The carry out cg is not enough to determine overflow. Here,
if cs#c7 there is overflow. If cg=c7, no overflow and we can ignore cs. Thus, the overflow bit is equal to cg XOR c;.
Overflow: It occurs when the summation falls outside the 2's complement range for 8 bits: [—27,27 — 1]. If there is no
overflow, the carry out bit must not be part of the result.

O 4O -=H-H00O0 i 4O 4000000
“oo IL ||LD ”m "<r ”m IIN ||H “O 1 ”oo ||’\ "kD |Im “<r “m ||N ||H ”o
O 0O 0O 0 O 0O o 0O : [ S S S S s
+92 =01011100+ | -92=10100100 +
+78 = 01001110 i -78 = 10110010
+170 = 010101010 E -170=101010110
overflow = c¢;®c,=1 -> overflow! . overflow = cg®c,=1 -> overflow!
+170 ¢ [-27, 27-1] -> overflow! ' -170 ¢ [-27, 27-1] -> overflow!
-0 O0O0O0O : Cooo - dooo
o ol My My MG L TS i o ot My i NI
[ S S S S ) 1 [ S S S S S ")
492 =01011100+ i 92 =10100100+
-78 =1 0110010 ! +78 = 01 001110
+14 =X 00001110 | -14 =11110010
overflow = c¢g®c,=0 -> no overflow ! overflow = c¢g®c,=0 -> no overflow
+14 € [-27, 27-1] -> no overflow ' -14 e [-27, 27-1] -> no overflow
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= To avoid overflow, a common technique is to sign-extend the two FENITRR TYSTRRR
summands. For example, for two 4-bits summands, we add an S5 d ST S
extra bit; thereby using 5 bits to represent the operators. +7 =001 11+ -7=11001+
+2 =00010 -2=11110
+9=01001 -9 10111
Subtraction
= Note that A — B = A + 2C(B). To subtract two signed (2C) numbers, we 7 -3 =7 + (-3): Tﬁ ‘ﬁ'm ‘H'N T|'H Cn’o
first apply the 2's complement operation to B (the subtrahend), and then +320011 — -3=1101 O ooooU
add the numbers. So, in 2's complement arithmetic, subtraction ends up +7=0111 +
being an addition of two numbers. cout = 1 -3=1101
overflow = 0 4 0100

SUMMARY

= Here, we summarize results for addition/subtraction of two n-bit numbers. This is considered to be an n-bit operation, whose
result is an n-bit number.

Unsigned numbers

= Addition: This operation is specified as A+B+cin.
v cin=0: Largest value: 2" — 1 + 2" —1 = 2"*1 — 2,
v’ cin=1: Largest result: 2"*1 — 1.

= Subtraction: This operation is specified as A-B-bin. The largest result will be 2™ — 1.

= Thus, the addition/subtraction of two n-bit operators needs at most n + 1 bits.

= Overflow: It occurs when the result needs more than n bits, i.e, it is outside the range [0, 2™ — 1]. The overflow bit can
quickly be computed as overflow = c,, ¢, = Cout-

Signed numbers
= Addition: This operation is specified as A+B+cin.
v’ cin=0: Largest negative value: —2"~1 + (—2"~1) = —2", Largest positive value: 21 — 1 4+ 271 — 1 =2"n -2,
v cin=1: Largest negative value: —2" + 1. Largest positive value: 2™ — 1.
= Subtraction: This operation is specified as A-B-bin.
v bin=0: Largest negative value: —2™"~1 — (2"~ — 1) = —2" + 1. Largest positive value: (2"t — 1) — (-2"1) = 2" — 1.
v bin=1: Largest negative value: —2". Largest positive value: 2™ — 2.
Note: For efficient hardware implementation, it is common to represent bin as an active low input, thus giving A+B+bin-1.

= Thus, the addition/subtraction of two n-bit operators needs at most n + 1 bits.

= Overflow: It occurs when the addition/subtraction result is outside the range [—2"~1, 2"~ — 1]. The overflow bit can quickly
be computed as overflow = ¢,Pcp,_1. cn = Cous-

", = oyt IS USed in multi-precision addition/subtraction.

= Addition/Subtraction of two n-bit numbers:

UNSIGNED SIGNED (20)
Overflow bit Cn cn®cp_q
Overflow occurs when: A+Begl[0,2"—1], ¢, =1 (A+B)g[-2"1,2" 1 —1], ¢,®c,_1=1
Result | cin=0 (bin=0) [0,27*1 — 2] A+ B e [-2m2" —2] A—Be[-2"+1,2" —1]
range: | cin=1 (bin=1) [0,27*1 — 1] A+Be[-2"+1,2"—1] A—Be[-2"2"—2]

Result requires at most:

n + 1 bits

= In general, if one operand has n bits and the other has m bits, the result will have at most max(n, m) + 1. When adding
both numbers, we first force (via sign-extension) the two operators to have the same number of bits: max(n, m).
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MULTIPLICATION OF INTEGER NUMBERS

UNSIGNED NUMBERS
= Simple operation: first, generate the products, then add up all the columns (consider the carries).

a; a, a; ag x

13 ‘ 1101 15 » 1111
asby ayby a;by agby ——— dHd -+ O OO O --- _,g9gg"ooo°
asb; a,b, a;b; ayb,; 143 1011 195 1101
asb; a,b; a;bs ajb
U3 TaEs T Toms 1011 1101
Py Ps Ps DPg Ps j<)) j<3] Py 10001111 11000011

= If the two operators are n-bits wide, the maximum result is (2" — 1) x (2" — 1) = 22" — 2™*1 + 1, Thus, in the worst case,
the multiplication requires 2n bits.

= If one operator in n-bits wide and the other is m-bits wide, the maximum resultis: (2" — 1) x (2™ — 1) = 2"tm — 2" — 2™ 4
1. Thus, in the worst case, the multiplication requires n + m bits.

SIGNED NUMBERS (2C)

= A straightforward implementation consists of checking the sign of the multiplicand and multiplier. If one or both are negative,
we change the sign by applying the 2's complement operation. This way, we are left with unsigned multiplication.

As for the final output: if only one of the inputs was negative, then we modify the sign of the output. Otherwise, the result
of the unsigned multiplication is the final output.

101 x 011 x 01 0 x

010 x L1 1xg001x 011 x
010 010 110 010 110 010 010
000 000 000 000
011 010 001 011
000 000 000 000
000110 000100 000010 000110
$ $
111010 111100

Note: If one of the inputs is —2"~1, then when we change the sign we get 21, which requires n + 1 bits. Here, we are
allowed to use only n bits; in other words, we do not have to change its sign. This will not affect the final result since if we
were to use n + 1 bits for 2", the MSB=0, which implies that the last row is full of zeros.

1 00 x 100 x 011x 011 x 1 00 x 100 x
011 011 100 100 100 100
100 000 000
100 000 000
00O 011 100
001100 001100 01 00O0O
A ¥
110100 110100
= Note: If one input is negative and the other is positive, we can use the negative (l) 2 S é X . é S 2 é %
number as the multiplicand and the positive number as the multiplier. Then, we can
operate as if it were unsigned multiplication, with the caveat that we need to sign 000000O00O
extend each partial sum to 2n bits (if both operators are n-bits wide), or to n + m (if 1111001
one operator is n-bits wide and the other is m-bits wide). é é (1) 8 8 1
11010110

= For two n-bit operators, the final output requires 2n bits. Note that it is only because of the multiplication —2"~1 x —27-1 =
227=2 that we require those 2n bits (in 2C representation).

= For an n-bit and a m-bit operator, the final output requires n + m bits. Note that it is only because of the multiplication
=211 x —2m~-1 = pn+m=2 that we require those n + m bits (in 2C representation).
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DiviSION OF INTEGER NUMBERS

UNSIGNED NUMBERS
= The division of two unsigned integer numbers A/B (where A is the dividend and B the divisor), results in a quotient Q and
a remainder R, where A = B x Q + R. Most divider architectures provide Q and R as outputs.

15 <= Q 00001111 <= Q ALGORITHM
B =9 ) 140 <= A B wp 1001 / 10001100 «m A
90 1001 R =20
50 10001 for i = n-1 downto 0
45 1001 left shift R (input = a;)
i >

5 <= R 10000 if R 2 B

1001 g; =1, R« R-B

1110 else

q; =0
1001
_OO end
10] «@m R end

= For n-bits dividend (4) and m-bits divisor (B):
v' The largest value for Q is 2™ — 1 (by using B = 1). The smallest value for Q is 0. So, we use n bits for Q.
v" The remainder R is a value between 0 and B — 1. Thus, at most we use m bits for R.
v IfA=0,B+0,thenQ =R =0.
v If B = 0, we have a division by zero. The result is undetermined.

= In computer arithmetic, integer division usually means getting Q = |A/B].

= Examples: , . |
00001111 00000111 ! 000000111 ! 000010100
1010 J 10011101 ! 10101 J 10100001 ! 101110 J 101010001 ! 10100 J7176100010
1010 ! 10101 ! 101110 ! 10100
157/10: | 161/21: —i | 337/46: —i | 418/20: —N
0= 15 10011 Lo =7 100110 | g = 7 1001100| | o = 20 11000
R = 7 1010 I R = 14 10101 | R = 15 101110y | R = 18 10100
1 - 1 — 1
10010| | 100011 | 111101 10010
1010 ! 10101 | 101110
1 1 _—
10001 1110 | 1111 1
1010 : :
_— 1 1 1
111 | |

SIGNED NUMBERS
= The division of two signed numbers A/B should result in Q and R such that A = B x Q + R. As in signed multiplication, we

first perform the unsigned division |A|/|B| and get Q' and R’ such that: |A| = |B|] x Q" + R'. Then, to get Q and R, we apply:

Quotient Q Residue R
] —R’ A<0,B>0
AXB<0 -Q R A>0,B<0
R’ A=>20B>0
> ’ 0.
AXB=0,B+#0 Q R A<0,B<0

= Important: To apply Q = —Q' = 2€(Q"), Q' must be in 2C representation. The same appliesto R = —R' = 2C(R"). So, if Q' =
1101 = 13, we first turn this unsigned number into a signed number — @’ = 01101. Then Q = 2€(01101) = 10011 = —13.

011011 _ 27
0101 5

v Convert both numerator and denominator into unsigned numbers:

= Example:
11011 00101

1o 101 11011

101

v % = Q' =101, R’ = 10. Note that these are unsigned numbers.

v GetQandR:A<0,B>0->Q=Q =0101=5 R=R =010 = 2.

Note that Q and R are signed numbers. 1(1)1
v’ Verification: 27 =5 x5 + 2. 10
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, 0101110 _ 46
. Example.w—_—s 001001
. . . 0101110
v" Turn the denominator into a positive number — ——— 101 101110
v Convert both numerator and denominator into unsigned numbers: 101101110 = % 101
v % = Q' = 1001, R’ = 001. Note that these are unsigned numbers. Oiég
v GetQand R: A>0,B<0— Q=2C(Q")=2C(01001) =10111= -9, R = R’ = 001 = +1. —
1
v’ Verification: 46 = -5 x —9 + 1.
. 10110110 =74
= Example: S TTTREIETY
. . 01001010 0000101
v" Turn the numerator into a positive number - ———
. o ouor 1001010 1101 1001010
v Convert both numerator and denominator into unsigned numbers: o1 1101”
4 % = Q' =101, R' = 1001. Note that these are unsigned numbers. 10110
v GetQandR: A< 0,B>0— Q=2C(0101) = 1011 = -5, R = 2C(R") = 2€(01001) = 10111 = —9. 1101
1001
v’ Verification: —74 = 13 x =5 + (-9).
. Example:%:%‘;1 0001110
v Turn the numerator and denominator into positive numbers — % 111) 1100101
111
v Convert both numerator and denominator into unsigned numbers: % — l
|4l " . . 1011
4 B Q' = 1110, R’ = 11. These are unsigned numbers. 111
v GetQandR:A<0,B<0—Q=0Q =01110 =14, R = 2C(R) = 2€(011) = 101 = —3. 000
111
v’ Verification: —101 = —7 x 14 + (=3). —
11
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BASIC ARITHMETIC UNITS FOR INTEGER NUMBERS

Boolean Algebra is a very powerful tool for the implementation of digital circuits. Here, we map Boolean Algebra expressions

into binary arithmetic expressions for the implementation of binary arithmetic units. Note the operators '+’, . in Boolean
Algebra are not the same as addition/subtraction, and multiplication in binary arithmetic.
ADDITION/SUBTRACTION
UNSIGNED NUMBERS
= 1-bit Addition:
v Addition of a bit with carry in: The circuit that performs this operation is called Half Adder (HA).
x + 0 + 0 + 1 + 1+
y 0 1 0 1
carryout «<— c s —> sum 00 01 01 10
x|ly| c s X \ s
oj14 01 y C
1j0j 0 1 C
1j1 1 0
v Addition of a bit with carry in: The circuit that performs this operation is called Full Adder (FA).
Ci
x X — ! X—
carryout vy sum —S i X— —S = — S
Y— FA ! HA = Y— FA
L c, s C — —C ; Y — —C 0__ — Co
= n-bit Carry-Ripple Addition: A + B + cin T T c
The figure on the right shows a 5-bit addition. Using the truth table CA out in N
method, we would need 11 inputs and 6 outputs. This is not practicall 15: 0 1 1 1 1 + Xy X3%p%1 %0
Instead, it is better to build a cascade of Full Adders. 10: 01 010 Ya¥Y3Y2Y1Yo
: v
For an n-bit addition, the circuit will be: 25: 11001 483528150
c c n-1 ¥Yn-1 Xy Yo X Xy Yo
I S e e e e e e
Xpo1Xpope » « X Xg + Cout iCn Cht Cq c, (o Co'! Cin
Yn-1¥Yn-2- - -¥Y1Yo < FA |€<—— .- <—— FA € FA < FA (_,_
Y S 1S, ,...5;5, B N Voo
Sn-1 S; 51 So
. Xi¥i —_ = —_ —_——
Full Adder Design c,\ 00 01 11 10 S; = X,y;C; + X;y;C; + xyviCy + XyViCy
X |Y:|Ci | Ciy1 S; 0] 0 D 0
= ‘ s; = (x:®y;)c; + (x:0y;) ¢y
ojojo 0 o 117 0 1 o
ojoj1y o 1 C‘ s; = x;,@y,®c;
oj1jo 0 1
X.V;
Of1|1f 1 0 X700 01 11 10
11919 o 1 0 0 0 1 ] 0
1101 1 0 Ciy1 = X3¥; T X3C; + yiCy
110 1 0 11 o 1 1 1
111 1 1 [ }
= Overflow
Xn-1 Yn-1 X Y2 X1 Y1 Xy Yo X Y
T T At e Y
iC c c c c Co: Ci
i——” FA |« .« A« A <« A « " —cout<\__*  Jon
i, ,,,,,,,,, #,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,¢ ,,,,,,,,,,,,,,,,,,, ¢ ,,,,,,,,,,,,,,,,,,,¢,,,,,,,,,,,: n S

Instructor: Daniel Llamocca



ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-4710/5710: Computer Hardware Design

Winter 2024

= n-bit Borrow-Ripple Subtractor: A — B — bin
We can build an n-bit subtractor for unsigned numbers using Full Subtractor circuits. In practice, subtraction is better
performed in the 2’s complement representation (this accounts for signed numbers).

Xp-1 Yn-1

boul bin
X 1¥pe « - X1 Xg
Yn-1¥Yn-2++ - Y1Yo
d,d 5. . .d1d,

Full Subtractor Design
b

"
<
I

o
e

Q.
o

i

RFHrRHOOOO
rRrOOKRKROO
HFoOrOKFROKFRO
RoookrRrRrolr
s
HoOOKROKREKLRO

SIGNED NUMBERS

X7

Y2

b ' b b._ b b b, i b
Me—T B |« < FS &—— Fs ©«—— Fs <——"
”””””” 72 2 2 2
dn—l d2 dl dO
XY
. 00 01 11 10 -_— - —_— -
by — —— 4 = xy;b; + oxyyiby +oxyy;by +oxiyiby
0| 0 \ 1 \ 0 \ 1 \
p - N d; = (x,®y;)b; + (x;®@y;)b;
11 o1} o
: / d; = x,®9y,®b;
Xi¥;i
bi 00 01 11 10
0 0 1 0 0
b, = xy; + xby + y;by
1 [ 1 1 l} 0

= n-bit Carry-Ripple Addition: The figure depicts an n-bit adder for 2's complement numbers: A + B + cin.

out
overflow C(f

Xp-1 Yn-1 X2 Yo X0 Yo
A N A | i ¢ ””””””” Vv
(o C (o G ¢ ! Cin
FA |€7— - €«<——— FA € FA € FA (——
”””””” — Ty e
Sn-1 S2 S, So

= Subtraction: A — B = A + 2C(B). In 2C arithmetic, subtraction is actually an addition of two numbers.
The digital circuit for subtraction is based on the adder. We account for the 2C operation for the subtrahend by inverting
every bit in the subtrahend and by making the c;, bit equal to 1. Note that this circuit does not allow for a borrow in.

Xn-1 Yn-1
|
e Cn
Cout i FA (—n—
overflow r !
_@\ ________ i ______
Sn-1

X2

Y2

X1 Y1

X0 Yo

= Subtraction with borrow-in: A — B — bin = A+ 2C(B) — bin.
v If bin = 0 (no borrow in), we have A—B=A4 +2C(B)=A+B + 1
v If bin=1 (borrowin) ,wehave A—B—1=4 +2C(B)—1=A+B

If we want to use an adder to implement this operation, we need to make cin 4ppgr = bin.

n} nl,

_ bin

t |
n Vv
1S

cout j in=
overflow :L+ ein=t

Instructor: Daniel Llamocca



ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-4710/5710: Computer Hardware Design Winter 2024

= Adder/Subtractor Unit for 2's complement numbers: A + B
We can combine the adder and subtractor in a single circuit if we are willing to give up the input cin. So, this circuit does
not allow for carry in (summation) or borrow in (addition).

Xn-1 ¥Yn-1 X2 }/2 X1 }/1 X0 }/0 N
add/sub
Lr T T
add=0
sub=1
1
Cout 1Cn FA Cn-1 C3
overflow @f : |
: y ' ) |
Sn-1 S2
add/sub yil £ Adder/Subtractor:
8 (13 2 add/sub _>D_ c
1 0 1 Vi — add/sub
1 1o

= Adder/Subtractor Unit for 2's complement numbers: 4 + B + cin
We can combine the adder (4 + B + cin) and subtractor (A — B — cin) in a single circuit. When operating as a subtractor
the cin input is interpreted as a borrow in.
v A—B —cin. If cin = 0 (no borrow in), we have A—B=A4 +2C(B)=A+B + 1
v A—B —cin, If cin =1 (borrow in) ,wehave A—B—-1=A4 +2C(B)—-1=A+8B
Xn-1 Yn-1 X2 }/2 X1 Y1 X0 Yo

! ! o add/sub
Lr T T
add=0
sub=1
I Cn
Cout | FA cin
overflow (A
— T
Sn-1

add/sub cinl Co

0 0

(e N el

0 1
1 0
1 1

= Adder/Subtractor Unit for 2's complement numbers: A + B + cin
v" The previous circuit is not optimal for multi-precision addition or subtraction, as the XOR gate whose output is ¢, can
only be fed to the LSB of the entire operation. This would make the circuit convoluted.
v Instead, if we treat cin an active-low borrow in for subtraction (cin is treated as active-high for addition), we have:
o A—B+cin—1, cin is active-low borrow in.
If cin = 0 (borrow in), we have A—B—-1=A4 +2C(B)—1=A+B
If cin = 1 (no borrow in) , wehave A—B=A4 +2C(B)=A+B+1
v This results in a simplified circuit that can be used for multi-precision addition. This approach is very popular in industry.

Xn-1 j:rji X2 }/2 X1 }/1 X0 }/o m b
add/su
L L L L
add=0
sub=1

So
—_— . . X Y
add/sub cinl Co Adder/Subtractor with carry in: nl’ n
0 0 0
0 1 1
1 0 1
1 1 0
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MULTIPLICATION
UNSIGNED NUMBERS as az ai ap X

by by b1 Dby

= For two n-bit unsigned numbers A4 and B, the multiplication A x B is given by: a-be asbe a-bn acbe +
300 280 1~0 o0~ 0

asb; azb: aibr agb: +

n—1 n—1
AXB = Zajzi Zbizi asby azby aib, agb: +
0 = asbs azbs aibs agbs

j=

P7 Pe Ps Pu P3 P2 P1 Po
= This formula can be rewritten as:

n-1 n-1 n-1
AX B = by2° Za,-zi + b2t Zajzi 4ot by, 2m1 Zajzi
j=0 j=0 j=0

= This results in n partial products bizi(Z}:& a,»zf), i =0,..n— 1. We have to add the partial products. Most architectures are
based on the implementation of this cumulative operation.

Array Multiplier

= A straightforward combinational implementation for the multiplication can be achieved by adding two partial products (rows)
at each stage. This is also called an Array Multiplier. The figure shows the circuit for two 4-bit unsigned numbers.

= Though this is a straightforward implementation, this circuit has a large combinational delay from input to output. Every
stage (row) propagates the carries to the left.

0000 <
0000 0000 |

o000 'YX X X X B
0000 0000000
o000 > 0000
o00000O00 e0000000

o000 -

a, 0 asj a, a; a,

Py Ly | b
b;

bl

PU PU PU PU «— O

Cout FA Cin

b2

PU PU PU PU «— O
by
17 PU PU PU PU «— 0
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An alternative array multiplier is depicted in the figure cin as a; ai; ap X

below: at every diagonal of the circuit, we add up all % y b3 Dby by Do
terms in a column of the multiplication. Every stage
(row) does not propagate the carries to the left;

a3b0 a2b0 albo aob

instead, they are sent down to the next stage. Only FA asbaf lazby| jaibsjaob;
the last stage propagates carries to the left. as3bz||azbs| [aibof [acb:
s a3b3 a2b3 alb aob
cout
P Pe Ps  Pa P3 b2 P1 Po
b3 b2 bl bo

ao

ay

az

as

Ps

Iterative Multiplier
= This is based on the following sequential algorithm:

Example: 1111x
1101
P« 0, Load A,B 1111—»P« 0+ 1111
whl}e B#0 0000 — > P « 1111
if bg = 1 then 111 1 _
b b+ L1 —> P « 1111 + 111100 = 1001011
end if —> P « 1001011 + 1111000 = 11000011
left shift A 11000011
right shift B P« 0, A« 1111, B « 1101
end while bo=1 = P « P + A = 1111. A « 11110, B « 110
bo=0 = P « P = 1111. A « 111100, B « 11
bo=1 = P « P + A = 1111 + 111100 = 1001011. A « 1111000, B « 1
bo=1 = P <« P + A = 1001011 + 1111000 = 11000011. A « 11110000, B <« 0

12 Instructor: Daniel Llamocca
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0

iresetn

S1

DB

1 and E = 1, the register contents are initialized to 0.

.0"&DA

"00.

L~

N+M

N M
DA ey om0

Iterative Multiplier Architecture (N-bit by M-bit): FSM + Datapath circuit.

sclr: synchronous clear. In this case, if sclr
The solution is computed (at most) in M + 1 cycles.

resetn
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SIGNED NUMBERS (2C)

Signed Multiplier based on the Array Unsigned Multiplier:
= This signed multiplier uses an unsigned array multiplier, three adder subtractors (with one constant input), and a logic gate.
v The initial adder/subtractor units provide the absolute values of A and B.
v The largest unsigned product is given by 2"*™~2 (n + m — 1 bits suffice to represent this number), so the (n + m)-bit
unsigned product has its MSB=0. Thus, we can use this (n + m)-bit unsigned number as a positive signed number. The
final adder/subtractor might change the sign of the positive product based on the signs of A and B.

. . . >
= Absolute Value: For an n-bit signed number X, the absolute value is defined as: |X| = {8 t §§ 2 8

v" Thus, the absolute value |X| can have at most n + 1 bits. To avoid overflow, we sign-extend the inputs to n + 1 bits. The
result [X| has n + 1 bits. Since |X| is an absolute value, then |X|y = 0. Thus, we can get |X| as an unsigned number by
discarding the MSB, i.e., using only n bits: |X|,_, downto |X|,.

v Alternatively, we can omit the sign-extension (since we are discarding |X|,, anyway), and we will get |X| as an unsigned
number. If we need |X| as a signed number (for further computations), we append a ‘0’ to the unsigned number.

. A . B 1
o Signed o Signed . Absolute Value Circuit
r% n An_q m¢ m Bpo1 !
! signed
\___ H- 4 H- - ! n
4] 1B o Ak
unsigned "4 m% unsigned v 0 "o
An-g| |Bm-1 1 iny 1i, n+1 n=
ARRAY P :
o |MULTIPLIER o - 4] i
unsigned : L XL, = 0 i ix
n+ml n+ml | signed X1, 1X1n unsigned ~ § IX1
- 4], ' unsigned b [X|ey - 1X]o
n+m i
P Y signed |

Signed Multiplier based on the Iterative Unsigned Multiplier:

= This is very similar to the signed multiplier based on the array multiplier. We use an iterative multiplier instead. But we have
to save the sign of the multiplication (4,_,®B,,_;) until the iterative multiplier computes its result.

= For simplicity’s sake, we are making the assumption that s is only one pulse that will latch A,,_,®B,,,_, only once.

o Signed A o Signed B s An_l\uBm_1
n% nlw Apn_q m% B
|4l |B|
unsigned Y m% unsigned
ITERATIVE =)
MULTIPLIER
0 >
n+ m% n + mj, unsigned
+/- +/.7
n+m l
PV signed done

14 Instructor: Daniel Llamocca



ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-4710/5710: Computer Hardware Design

Winter 2024

Di1vISION

UNSIGNED NUMBERS

Iterative Divider
This circuit is based on the hand-division method already explained. We grab bits of A one by one and compare it with the
divisor. If the result is greater or equal than B, then we subtract B from it. On each iteration, we get one bit of Q. The
example below shows the case where A = 10001100; B = 1001.

15 <
Q 00001111 @= Q ALGORITHM
Bmro 140 <= A B = 1001J 10001100 %= &
90 1001 R=20
for i = N-1 downto O
10001 . . _
50 1001 left shift R (input = a;)
45 if R > B
- 10000 _
g; = 1, R « R-B
5 @= R 1001 else
1110 G =0
1001 end
_ end
101l e= R
A: N=8 bits A < 10001100, B « 1001, R <« 00000000
B: M=4 bits i =7, az =1: R « 00001 < 1001 = g7 = 0
R: M=4 bits i =6, as = 0: R « 00010 < 1001 = gs = 0
Intermediate subtraction i =25, as = 0: R « 00100 < 1001 = gs = 0
requires M+1 bits i =4, as = 0: R « 01000 < 1001 = q: = 0
Q: N=8 bits i =3, as = 1: R « 10001 > 1001 = g3 = 1, R « 10001 - 1001 = 01000
i =2, az=1: R ¢« 10001 > 1001 = gz = 1, R « 10001 - 1001 = 01000
i =1, ai = 0: R « 10000 > 1001 = g1 = 1, R « 10000 - 1001 = 00111
i =0, ao = 0: R « 01110 > 1001 = qo = 1, R <« 01110 - 1001 = 00101
= Q « 00001111, R « 0101

An iterative architecture is depicted in the figure for A with N bits and B with M bits, N > M. It results in a quotient Q and
a remained R. At every clock cycle, we either: i) shift in the next bit of A, or ii) shift in the next bit of A and subtract B.

(M + 1)-bit unsigned subtractor: We can apply 2C operation to B. If the subtraction is negative, cout = 0. If the subtraction
is positive, cout = 1 (here, we only need to capture R with M bits). This determines g;, which is shifted into the register A,
which after N cycles holds Q.

resetn—

clock —

DA DB resetn=0
E s1 y
NL ML sCIrR «— 1, ER« 1
ininiuinle Ittt bleleioinly Aulaiataiointniuieieieininbeieieieiebebeieiel Miekebebeieleleiat C«0
L e ’
S 1
LEFT SHIFT i
0
REGISTER e REGISTER : 0
[aa] 1
S| |S ' 1
A M/B :
“oin ! [LaB, EA 1]
' LAB, EA « 1
) Y m+1f 0&B !
k! ! s2
e | | ER«< 1,EA«1 |<—
N 1
1
cout : cout + cin 1 !
N 1 1
5 ML Ty Ty .. . Ty cout
0 ! 0
o ML Tui.. T i
1
EgrR sclr ! 0
FSM s L LEFT SHIFT  |ay; | C=N-1 C e cil
> ER E  REGISTER !
| 1
M+ M | S3
A M 1
! | done « 1 |<—
an-1 Ry 1Rys---Ro|
__________________________________________________________ 1
0 < > 1
NL M
done 0 R
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20,DB =7

27,DB =09, ii) DA =

4). i) DA
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Example (timing diagram N = 5,M

clock

Instructor: Daniel Llamocca
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COMPARATORS

UNSIGNED NUMBERS

= For A = azaya,ay, B = b3b,b, by 23 >DOL
3
v A > B when:
a. ::>
az = 1,b3 =0 bZ C2
OI’: a3=b3 and a2=1,b2=0 2
OI’: az = b3,a2 = bz and a, = 1, bl =0 a, e —
OI’: az = b3,a2 = bz,al = bl and Ag = 1,b0 =0 blj
D
by

R A=B
L/

s —J A<B
A + A-B Zz —_o )_ —O
A COMPARATOR [— A<B 8
| e; |
b, —Q L
e, — A>B
e; ]
a; ]
b, —0)
e | A<B
e, ]
e; | —
a,—
b, —O)
SIGNED NUMBERS
- F|rst Approach:
If A= 0 and B = 0, we can use the unsigned comparator.
\/ If A < 0 and B < 0, we can also use the unsigned comparator. €3
Example: 1000, < 1001, (-8 < -7). The closer the number is 4, A=B A=B
to zero, the larger the unsigned value is. A > ,_\
v If one number is positive and the other negative: . UNSIGNED | A<B /DO__ A<B
Example: 1000, < 0100, (-8 < 4). If we were to use the g 5| COMPARATOR |
unsigned comparator, we would get 1000, > 0100,. So, in this A>B )Do—— A>B

case, we need to invert both the A>B and the aA<B bit.

v' Example: For a 4-bit number in 2's complement:
— If a; = b3, A and B have the same sign. Then, we do not need to invert any bit.
— If ay # b3, A and B have a different sign. Then, we need to invert the A>B and A<B bits of the unsigned comparator.

es =1 when a; = b;. e; = 0 when a; # bs.
Then it follows that: (A < B)signea = €39(A < B)ynsignea = €3P(4 < Bunsignea
(4> B)signed = e3®(4 > B)unszgned

= Second Approach:
v" Here, we use an adder/subtractor in 2C arithmetic. We need

to sign-extend the inputs to consider the worst-case scenario
and then subtract them. R R R
v' We can determine whether 4 is greater than B, based on: An- 1L - n n=1 e 0

1-A—-B<0
Fa={oSa-p =0 ntl
v" To determine whether A = B, we compare the n + 1 bits of R " i et
to0 (R = A — B). However, note that (A — B) € [-2™ + 1,2" — v
2]. So, the case R = —2™ = 10 ... 0 will not occur. Thus, we only n+1 A<B A>B A=B
need to compare the bits R,_; to R, to 0. R=A-B
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ARITHMETIC LOGIC UNIT (ALU)

Two types of operation: Arithmetic and Logic (bit-wise). The sel (3..0) input selects the operation. sel (2..0) selects

the operation type within a specific unit. The arithmetic unit consist of adders and subtractors, while the Logic Unit consist
of 8-input logic gates.

—

4,

ARITHMETIC
UNIT

1

>

LOGIC UNIT

]

sel (3)

sel w=

BARREL SHIFTER

sel Operation Function Unit
0000y <=a Transfer 'a'
0001fy<=a+1 Increment 'a' ;
0010fy<=a-1 Decrement 'a' H
0011f)y<=ho Transfer 'b' E
0100fy<=Db+1 Increment 'b' E
0101 y<=Db -1 Decrement 'b' E
0110fy<=a+b Add 'a' and 'b' Q
0111f]ly<=a-b>b Subtract 'b' from 'a'
1 000fy <=NOT a Complement 'a'
1 001fy <=NOTDhb Complement 'b'
1010 y <= a AND b AND
1011)]y<=aoORbD OR g
1100fy<=a NAND b NAND @
1101}y <=aNORDb NOR Q
1110fy<=aXORDb XOR
1111 y <= a XNOR b XNOR

mode: Operation mode (or shift type): Arithmetic (x 2¢ for signed numbers), Logical (x 2¢ for unsigned numbers), Rotation.

v' mode=0 (arithmetic mode): when shifting to the right, sign-extension is used. Shifting to the left inserts 0's.
v" mode=1 (logical mode): when shifting to the right, zero-extension is applied. Shifting to the left insert 0’s.
v" mode=2 (rotation mode): when shifting to the right or left, no bits are lost (they wrap-around)

dir: It controls the shifting direction (dir=1: to the right, dir=0: to the left).
sel[2..0]1: Number of bits to shift.
result[7..0]: Shifted version of the input data[7..0].

¥

result

ARITHMETIC LOGICAL ROTATION
dir |dist[2..0]| data[7..0] |result[7..0] |result[7..0]| result[7..0]
0 000 abcdefgh abcdefgh abcdefgh abcdefgh
0 001 abcdefgh bcdefgh0 bcdefgh0 bcdefgha
0 010 abcdefgh cdefgh00 cdefgh00 cdefghab
0 011 abcdefgh defgh000 defgh000 defghabc
0 100 abcdefgh efgh0000 efgh0000 efghabcd
0 101 abcdefgh fgh00000 fgh00000 fghabcde
0 110 abcdefgh gh000000 gh000000 ghabcde £
0 111 abcdefgh h0000000 h0000000 habcdefg
1 000 abcdefgh abcdefgh abcdefgh abcdefgh
1 001 abcdefgh aabcdefg Oabcdefg habcdefg
1 010 abcdefgh aaabcdef 0Oabcde £ ghabcde £
1 011 abcdefgh aaaabcde 000abcde fghabcde
1 100 abcdefgh aaaaabcd 0000abcd efghabcd
1 101 abcdefgh aaaaaabc 00000abc defghabc
1 110 abcdefgh aaaaaaab 000000ab cdefghab
1 111 abcdefgh aaaaaaaa 0000000a bcdefgha
data =3 ] | 1 ] ] 1
£2S555ss3|[ET5 e384 [F2S5SSS8|[5T5852a2|[EEa558s | [ETusc2az
((To) NelloNoNeNe N} “4W 0T 0UQ T O [NieNeloNoNoNoNo} YW QT 0UQ @O O “H oo o Q0T O - O T OO @S O
6288880 aRRERE |80 2888||8088R88888|[80a6238a0|B0868E63%
B0 BT IECS|8RRERERR |8880S628||1883S88S88||88 808862818826 TET
T Q0B oHo|[Cdddodcsmda||[00000rHoa|l[tccococococo||taosowoel|cac oy od o.q
dBt—%A—401 2345 67&—J0 12345 67&—£0 12345 67&—;0 12345 67&—£0 12345 67&—40 123456 $
| | | | | |
dir — N0 1/ \0 1/ \0 1/
mode —& \(! lI !/
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FIXED-POINT (FX) ARITHMETIC

INTRODUCTION

FX FOR UNSIGNED NUMBERS

We know how to represent positive integer numbers. But what if we wanted to represent numbers with fractional parts?
Fixed-point arithmetic: Binary representation of positive decimal numbers with fractional parts.

FX number (in binary representation):  (bp_1by—3 ... b1bg.b_1b_5 ...b_}),
Conversion from binary to decimal:
n—-1

D= Z bix2i=by  X2" 14 by o, x2M 24 b by X2V + b X209+ b_y X2V + by x272 4+ b_ x 27K
i=—k

Example: 1011101, = 1x23 +0x22+1x21+1x2°+1x2714+0x272+1x273=11.625

To convert from binary to hexadecimal:

Binary: 10101.10101, === 0001 0101.101Q 1000
5 . A

hexadecimal: 1 8

Conversion from decimal to binary: We divide the number into its integer and fractional parts. We get the binary

representation of the integer part using the successive divisions by 2. For the fractional part, we apply successive

multiplications by 2 (see example below). We then combine the integer and fractional binary results.

v' Example: Convert 31.625 to FX (in binary): We know 31 = 11111,. In the figure below, we have that 0.625 = 0.101,.
Thus: 31.625 = 11111.101,.

Number in Number in Number in Number in
base 10 | base 2 | lbase 10 | base 2
Y Y
0.625 |:> 2227, 0.7 I:> 2227,
'MSB ~_MSB

0.625x2 = 1.25 =[(1)+ 0.25 0.7x2 = 1.4 =1+ 0.4
P ’ 1
0.4x2 = 0.8 =]0 + 0.8

0.25x2 = 0.5 =|0 + 0.5 e
K\’/

0.8x2 =1.6 =]1 + 0.6

——/

0.5x2 =1 =1+Oj K—\

' 0.6x2 = 1.2 = |1 + 0.2

0.101
2 stop here! F_\_/

0.2x2 = 0.4 = |0 + 0.4
_/

0.4x2 = 0.8 = |0 + 0.8

¥0.10110 0110

FX FOR SIGNED NUMBERS

Method: Get the FX representation of +379.21875, and then apply the 2’s complement operation to that result.

Example: Convert -379.21875 to the 2’s complement representation.

v 379=101111011,.0.21875=0.00111,. Then: +379.21875 (2C) = 0101111011.00111,.

v' We get -379.2185 by applying the 2C operation to +379.21875 = -379.21875 = 1010000100.11001, = 0xE84.C8.
To convert to hexadecimal, we append zeros to the LSB and sign-extend the MSB. Note that the 2C operation involves
inverting the bits and add 1; the addition by ‘1’ applies to the LSB, not to the rightmost integer.
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INTEGER REPRESENTATION

n — bit number: bn_lbn_z v bo

UNSIGNED SIGNED
Decimal < <
_ i — _9on-1 i
Vel D= Z b2 D=-2"1h, ,+ Z b;2
i=0 i=0
Range of [O om _ 1] [_211—1 -1 _ 1]
values ’ ’

FIXED POINT REPRESENTATION

Typical representation [n p]: n — bit number with p fractional bits: b,,_,,_1by_p_3 ... bo-b_1b_5 ... h_p,

n
| n-p | p
UNSIGNED SIGNED
n-p-1 n-p-2
Decimal i —p— i
At D= Z b;2i D=—2mP1p, .+ Z b2
i=—p i=—p
Range of 0 2"-1 _ _ —2n7t onmt—1] ot amepe1 o
values [2—27,2—17] = [O,Zn P_2 P] Z—D'T — [_zn 14 ,2” 14 -2 P]
|2n7P —277| |—2nP1
Dynamic - =2"-1 g1
Range 1277] [2-7|
(dB) = 20 x log;o (2" — 1) (dB) = 20 X log;,(2™1)
Resolution 2P 2-p
(1LSB)

Dynamic Range:
largest abs.value

Dynamic Range =
y g smallest nonzero abs.value

Dynamic Range(dB) = 20 X log,o(Dynamic Range)

Unsigned numbers: Range of Values

2°p
HH——F
0 27° 2P =P _ 2P
Signed numbers: Range of Values
2°p
HH——
—on-p-1 2P (o 2°P n-p-1_>-p
Examples:
FX Format Range Dynamic Range (dB) Resolution
[8 7] [0, 1.9922] 48.13 0.0078
UNSIGNED [12 8] [0, 15.9961] 72.24 0.0039
[16 10] [0, 63.9990] 96.33 0.0010
[87] [-1, 0.9921875] 42.14 0.0078
SIGNED [12 8] [-8, 7.99609375] 66.23 0.0039
[16 10] [-32, 31.9990234375] 90.31 0.0010

MATLAB/Octave scripts for Fixed-Point to Decimal conversion, and for Decimal to Fixed-Point conversion:
script fx2dec converter.zip: my_fxdec.m, my_dec2fx, my_bitcmp.m.

MATLAB quantizer approach:

ga = quantizer (‘ufixed’, [8
gb = quantizer ( ‘fixed’, [8

00101111
11010100

= 0.37;

a // Result:
b = -0.34;

// Result:

num2hex (ga, a) ;

11) 7
; num2hex (gb, b) ;

7])
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FIXED-POINT ADDITION/SUBTRACTION
Addition of two numbers represented in the format [n p]: | n-p | p | +
AX2P+Bx2P=(A+B)x27? n-p | p
We perform integer addition/subtraction of 4 and B. We just need to interpret the result
differently by placing the fractional point where it belongs. Notice that the hardware is | n-p+1 | P |

the same as that of integer addition/subtraction.

When adding/subtracting numbers with different formats [n p] and [m k], we first need to align the fractional point so that
we use a format for both numbers: it could be [n p], [m k], [n —p + k k], [m — k + p p]. This is done by zero-padding and
sign-extending where necessary. In the figure below, the format selected for both numbers is [m k], while the result is in

the format [m + 1 k].

[pp] » | pgyllerel » M-
| mx | k | | mx | k |
| m-k+1 | k |
Important: The result of the addition/subtraction requires an extra bit in the | | | n-p | P - +
worst-case scenario. In order to correctly compute it in fixed-point
arithmetic, we need to sign-extend (by one bit) the operators prior to m-k | k |
addition/subtraction.
| m-k+1 | k |

Multi-operand Addition: N numbers of format [n p]: The total number of bits is given by : n + [log, N| (this can be
demonstrated by an adder tree). Notice that the number of fractional bits does not change (it remains p), only the integer
bits increase by [log, N1, i.e., the number of integer bits become n — p + [log, N].

Examples: Calculate the result of the additions and subtractions for the following fixed-point numbers.

UNSIGNED SIGNED
0.101010 + 1.00101 - 10.001 + 0.0101 -
1.0110101 0.0000111 1.001101 1.0101101
10.1101 + 100.1 + 1000.0101 - 101.0001 +
1.1001 0.1000101 111.01001 1.0111101
Unsigned:
L - o 000 OO0 O - o - O LR B B = R = N ) fFoodocoocoocooooo
L1 L T | B T B TR TR [ ST P S G T I T [P T [V TSR TR [ T g ML T u WMo T T T
U’\UUquLf)nd\‘UHUO O 0 0 0 00 00 UUUQ‘UUUU UUUUUUUQUUUU
0.1 010100+ 1.001 0100 - 10,1101+ 100.1000000O0+
1.01 10101 0.0000111 1.1001 0.1 000101
10.0001001 1.00 01101 100.0110 101.0000101
Signed
TLIRLLR RS TRLLRRLRLY
SEFSFPETFTSSTE FEEFLTFNSSTS
110.001000 + 0.01 01000 - » 0.01 01000 +
111.001101 1.0101101 0.1 010011
101.01 0101 0.11 11011
OCoO0O-dd--dO0O TeHddodd—d00O0O0
R N AP T T N DT TR N M B
L S S S S " S S o) 0O 0O 00U LU LU O O o0 VoV
1000.01010 - 1000.01010 + 101.0001000+
1111.01001 ." 000O0.101171 111.0111101
1001.00 001 100.1 000101
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FIXED-POINT MULTIPLICATION

= Unsigned multiplication
Multiplication of two signed numbers represented with different formats [n p], [m k]: | n-p | P | %

[ mk | k |

n+m-p-k | ptk |

(Ax27P)x (B x27%)= (4 xB)x 2Pk, We can perform integer multiplication of A and B and then place the fractional
point where it belongs. The format of the multiplication result is given by [n+m p + k]. There is no need to align the
fractional point of the input quantities.

Special case: m =n,k =p ag  d; & gy X
(Ax2P)x (Bx27P)= (A% B)x 272", Here, the format of the b, b, b, b,
multiplication result is given by [2n 2p]. a.b, a,b, a,b, ago

asb; ayb; a;b; agb,
asb, ayb, a;b, agb,
asb; ayb; a;b; agb;

v Multiplication procedure for unsigned integer numbers:

Example: when multiplying, we treat the numbers as integers. Only 2.75 = 10.11 x » 1011 x
when we get the result, we place the fractional point where it belongs. 6.5 = 110.1 1101
1011
0000
1011
1011
10001111
$
17.875 =100 0 1.1 1 1

= Signed Multiplication: We first take the absolute value of the operands. Then, if at least one of the operands was negative,
we need to change the sign of the result. We then place the fractional point where it belongs.

Examples:
01.001 x 01.001 x »110111X 10.0001 x» 01.1111 x » 101001
1.001001 0.110111 1001 01.01001 01.01001 11111
110111 101001
000000 101001
000000 101001
110111 101001
101001
111101111
$ 10011110111
E R 010011‘{10111
&
1.000010001 101.100001001
110101
1000.000 x gh 01000.000 x g 1101011 x 01101010 x gy 0110101 % g 101
10.010101 01.101011 1000000 : . _—
110101
0000000 000000
1101011 110101
1101011000000 T 0001001
01101.011000000 0.0000100001001

1.1111011110111
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FIXED-POINT DIVISION

= Unsigned Division: A;/B;
We first need to align the numbers so they have the same number of fractional bits, then divide them treating them as
integers. The quotient will be integer, while the remainder will have the same number of fractional bits as 4.

Ay is in the format [na a]. By is in the format [nb b]

Step 1: For a = b, we align the fractional points and then get the integer numbers A and B, which result from:
A=A;x2% B=B;x2°
Step 2: Integer division: % = :—’fr
The numbers A and B are related by the formula: A = B x Q + R, where @ and R are the quotient and remainder of the
integer division of A and B. Note that Q is also the quotient of ;1—?

Step 3: To get the correct remainder of g, we re-write the previous equation:
f

A x20= (B x2%)xQ+R—> A =B, xQ+ (Rx279)
Then: Qf=Q’ Rf=RX2_a

Example:
1010.011

11.1
Step 1: Alignment, a = 3
1010.011  1010.011 1010011

111~ 11100 ~ 11100

Step 2: Integer Division

1010011
———=1010011 = 11100(10) + 11011 - Q = 10,R = 11011
11100
Step 3: Get actual remainder: R x 27¢
Ry = 11,011
Verification: 1010.011 = 11.1(10) + 11,011, @y = 10,Rr = 11,011

v' Adding precision bits to Q; (quotient of 4. /B;):
The previous procedure only gets Q as an integer. What if we want to get the division result with x nhumber of fractional
bits? To do so, after alignment, we append x zeros to Ay x 2 and perform integer division.

A= Ap X 20 x2% B =Bpx2%
Ap X297 = (B X 2%) X Q+ R = Ap = By X (Q X 27%) + (R x 27%7%)
Then: Qf =Q x27%, Rg =R X 27%7*

1010,011

with x = 2 bits of precision
11,1

Example:

Step 1: Alignment, a = 3
1010.011 _ 1010.011 _ 1010011

111~ 11100 ~ 11100

Step 2: Append x = 2 zeros
1010011 _ 101001100

11100 ~ 11100

Step 3: Integer Division
101001100

11100 = 101001100 = 11100(1011) + 11000

Q@ =1011,R = 11000

Step 4: Get actual remainder and quotient (or result): Q@ = Q X 27%,R; = R X 27%7*
Qs = 10.11,R; = 0.11000

Verification: 1010.01100 = 11.1(10.11) + 0,11000.
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= Signed division: In this case (just as in the multiplication), we first take the absolute value of the operators 4 and B. If
only one of the operators is negative, the result of abs(A)/abs(B) requires a sign change.
What about the remainder? You can also correct the sign of R, (using the procedure specified in the case of signed integer
numbers). However, once the quotient is obtained with fractional bits, getting R, with the correct sign is not very useful.

= Example: We get the division result (with x = 4 fractional bits ) for the following signed fixed-point numbers:

1011991, T positive (numerator and denominator), alignment, and then to unsigned: a = 4; 1211201 — 2100111 100111
1.011 1.011 0.1010 1010
0000111110 1001110000
Append x = 4 zeros: ———
1010 J 1001110000 ppend x. 1010
1010 Unsigned integer Division:
10011 Q =111110,R = 100
1010 - Qf =11.1110 (x = 4)
10010 101.1001
1010 Final result (2C): o = 011111 (this is represented as a signed number)
10000
1010
1100
1010
100
v 2L 70 positive (numerator and denominator), alignment, and then to unsigned, a = 5; 20 — 210100 _ 10100
1.01011 0.10101 0.10101 10101
000001111 101000000
10101 791000000 Append x = 4 zeros: ————
1010 ll Unsigned integer Division:
100110 Q =1111,R =101
10101 - Qf =0.1111(x = 4)
100010 oit
10101 Final result (2C): oror; = 01111 (this is represented as a signed number)
11010
10101
101
209119. To positive (numerator), alignment, and then to unsigned, a = 4: 22210 - 911910 _ 11010
01.01 01.01 01.0100 10100
000010100
10100 Append x = 4 zeros: %
/- 110100000 ynsigned integer Division:
1o1ool¢
11000 Q =10100,R = 10000
10100 - Qf = 1.0100(x = 4) * Qf here is represented as an unsigned number
10000

Final result (2C): % =2¢(01.01) = 10.11

2101019, T4 positive (denominator), alignment, and then to unsigned, a = 5; ——oot — 210101 10101
110.1001 001.0111 001.01110 101110
000000111
Append x = 4 zeros: 101010099
101110 J 101010000 Unsianed integer Division:
10111% nsigned integer Division:
1001100 Q =111,R =1110
101110 - Qf =0.0111(x = 4)
111100
101110  Final result (2C): Z2522 = 2¢(0.0111) = 11001
1110
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ARITHMETIC FX UNITS. TRUNCATION/ROUNDING/SATURATION

ARITHMETIC FX UNITS

= They are the same as those that operate on integer numbers. The main difference is that we need to know where to place
the fractional point. The design must keep track of the FX format at every point in the architecture. In the case of the
division, we need to perform the alignment and append as many zeros for a desired precision.

= One benefit of FX representation is that we can perform truncation, rounding and saturation on the output results and the
input values. These operations might require the use of some hardware resources.

TRUNCATION
= This is a useful operation when less hardware is required in subsequent operations. However | n-p | P
this comes at the expense of less accuracy.
= To assess the effect of truncation, use PSNR (dB) or MSE with respect to a double floating k
point result or with respect to the original [n p] format. n-p | p-k
= Truncation is usually meant to be truncation of the fractional part. However, we can also
truncate the integer part (chop off k MSBs). This is not recommended as it might render the number unusable.

ROUNDING

= This operation allows for hardware savings in subsequent
operations at the expense of reduced accuracy. But it is | n-p | P |0 | | np | P |1
more accurate than simple truncation. However, it requires 3 < $ <
extra hardware to deal with the rounding operation.

= For the number b,_p_1bp_p—3 . bo.b_1b_; ...b_,, if we want | n-p | p-k | n-p | p-k +
to chop k bits (LSB portion), we use the b,_,_; bit to
determine whether to round. If the by_,_; =0, we just
truncate. If b,_,_, = 1, we need to add ‘1’ to the LSB of | n-p+l | p-k |

the truncated result.

SATURATION
= This is helpful when we need to restrict the number of integer bits. Here, we are asked to |
reduce the number of integer bits by k. Simple truncation chops off the integer part by k
bits; this might completely modify the number and render it totally unusable. Instead, in k n-k
saturation, we apply the following rules: n-p-k |
v If all the k + 1 MSBs of the initial number are identical, that means that chopping by k
bits does not change the number at all, so we just discard the k MSBs.
v If the k + 1 MSBs are not identical, chopping by k bits does change the number. Thus, here, if the MSB of the initial
number is 1, the resulting (n — k)-bit number will be —2"~%=P-1 = 10 ... 0 (largest negative number). If the MSB is 0, the
resulting (n — k)-bit number will be 27~*-P=1 — 2-7 = 011 ...1 (largest positive number).

Examples: Represent the following signed FX numbers in the signed fixed-point format: [8 7]. You can use rounding or
truncation for the fractional part. For the integer part, use saturation.

= 1,01101111:
To represent this number in the format [8 7], we keep the integer bit, and we can only truncate or round the last LSB:
After truncation: 1,0110111
After rounding: 1,0110111 + 1 = 1,0111000

= 11,111010011:
Here, we need to get rid of on MSB and two LSBs. Let’s use rounding (to the next bit).
Saturation in this case amounts to truncation of the MSB, as the number won't change if we remove the MSB.
After rounding: 11,1110100+ 1 = 11,1110101
After saturation: 1,1110101

= 101,111010011:
Here, we need to get rid of two MSB and two LSBs.
Saturation: Since the three MSBs are not the same and the MSB=1 we need to replace the number by the largest negative
number (in absolute terms) in the format [8 7]: 1,0000000

= 011,1111011011:
Here, we need to get rid of two MSB and three LSBs.
Saturation: Since the three MSBs are not identical and the MSB=0, we need to replace the number by the largest positive
number in the format [8 7]: 0,1111111
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FLOATING-POINT (FP) ARITHMETIC

ENCODING
FLOATING POINT REPRESENTATION |

= There are many ways to represent floating numbers. A common way is: |

I+

e significand

X = xsignificand x 2¢ E m

= Exponent e: Signed integer. It is common to use a biased exponent (e + bias) in the encoding. This facilitates zero detection
(e + bias = 0). Note that the actual exponent is always e regardless of the bias (the bias is just for encoding).
e € [-2F~1,2E-1 — 1] (assuming bias = 25-1)

= Significand: Unsigned fixed point number. Usually normalized to a particular range, e.g.: [0, 1), [1,2).

m Format (unsigned): [m p]. Range: [0, ZTZ;I] =[0,2mP —-27P], k =m—p
If k = 0 — Significand € [0,1 — 277] = [0,1)
| k | p | If k = m — Significand € [0, 2™ — 1]. Integer significand.

Another common representation of the significand is using k = 1 and setting that bit (the MSB) to 1. Here, the range of the
significand would be [0,2! — 277], but since the integer bit is 1, the values start from 1, which result in the following
significand range: [1,2! — 27P]. This is a popular normalization, as it allows us to drop the MSB in the encoding.

IEEE-754 STANDARD

= Standardized floating point representation: sign bit biased exponent significand
| + e+bias £ |
X =+1. 2¢
1. X E o

= Significand: Unsigned FX number with 1 integer bit and p fractional bits. The significand is normalized to s = 1. f, where
f is the mantissa. The integer bit is constant (called hidden 1), so in the encoding, we only indicate f in the significant field.
Significand range: [1,2 — 27P] = [1,2) Significand format (unsigned FX): [p + 1 p]

= Biased exponent: Unsigned integer with E bits (called exp). exp = e + bias —» e = exp — bias. We just subtract the bias
from the exponent field to get the exponent value e.
v exp = e + bias € [0,2F — 1]. The bias ensures that exp > 0, while e is a signed number.
v’ The IEEE-754 standard defines bias = 251 — 1. Thus e € [-2E~1 + 1,271,
v' The IEEE-754 standard defines the following categories:
o exp = 2F — 1: to represent special numbers (NaN and +). Here, e = 25~ is not relevant.
o exp = 0: to represent the zero and the denormalized numbers. Here, e = —25-1 + 1 is not relevant.
o exp € [1,2F — 2]: Ordinary numbers. These are the most common numbers. Here, e € [-2E-1,2E-1 — 1].

*= Ordinary numbers: X = +1.f x 2¢

biased exponent significand Range of e: [=26-1 + 2,261 — 1].

etbiase[1,25-2] £ Max number:largest significand x 2'argest exponent
max = 1.11..1x 227 '-1 = (2 — 27P) x 22°7'-1

Min. number: smallest significand x 2Sma!lest exponent

min = 1.00...0 x 272°'+2 = p=2°71+2

max (2-27P)x 228711

min 2-2F142

Dynamic Range (dB) = 20 x log;,{(2 — 27P) x 225‘3}

I+

E P

=(2-27P) x 223

Dynamic Range =

=  Plus/minus Infinite: +«
biased exponent significand Special case: exp = 2 — 1 (string of 1's: 11..111). With

| + etbias = 2E-1 £-0 | f being 0’s. £ represent overflow. Though e = 21 is
- not relevant, we can think of plus/minus infinite as:
E p too = +227

* Not a Number: NaN

biased exponent significand Special case: exp = 2E — 1 (string of 1’s: 11..111). With
| f being any nonzero number. e = 26~ is not relevant.

It represents undefined numbers (e.g.: 0/0)

+

et+bias = 2E-1 ££0

E P
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Zero:
Special case: exp = 0 (string of 0s: 00..000).

biased exponent significand Zero cannot be represented as an ordinary number as

t etbias = 0 £=0 X = +1.f x 2¢ cannot be zero. Thus, a special code is
assigned to the significand: s = 0.00 ... 0 (all significand

E p bits are 0). Due to the sign bit, there are two

representations for zero.
The number zero is a special case of the denormalized numbers, where s = 0. f (see below).

Denormalized numbers: The implementation of these numbers is optional in the standard (except for the zero). Very
small values that are not representable as normalized numbers (and are rounded to zero), can be represented more precisely
with denormals. This is a “graceful underflow” provision, which leads to hardware overhead.
Special case: exp = 0 (string of 0s”: 00..000).
Note that e is set to —28~1 + 2 (not —2E-1 + 1, as the
etbias = 0 £#0 | e + bias = 0 formula would imply).
z Significand: represented as s = 0. f.
P Thus, X =+0.fx2"2°"*2, These numbers can

represent numbers smaller (in absolute value) than min (the number zero is a special case).
v Why is e not —2E-1 + 1? Note that the smallest ordinary number is 2-2°"+2,

The largest denormalized number with e = —2E=1 4 1is: 0.11..1x 22° "= = (1 — 27P) x 272" 7"+1,

The largest denormalized number with e = —2-1 4+ 2 is: 0.11...1 x 22°7'=2 = (1 — 27P) x 272" '+2,

By picking e = —2E-1 + 2, the gap between the largest denormalized number and the smallest ordinary number

(2-2°7'+2) is smaller. Though this specification makes the formula e + bias = 0 inconsistent, it helps in accuracy.

biased exponent significand

+

Depiction of the range of values:
G- 2—p)22E_1—1 —p—2F142 2—2E"142 - 2—p)22E_1—1
: e | |

T |

+00

Underflow region
(or denormal numbers)

Overflow region
The IEEE-754-2008 (revision of IEEE-754-1985) standard defines several representations: half (16 bits, E=5, p=10), single
(32 bits, E = 8, p = 23) and double (64 bits, E = 11, p = 52). There is also quadruple precision (128 bits) and octuple
precision (256 bits). You can define your own representation by selecting a particular number of bits for the exponent and
significand. The table lists various parameters for half, single and double FP arithmetic (ordinary numbers):

Ordinary numbers Exponent . Dynamic Significand Significand
Min o Max bilzs (E) Range of e Bias Raxge (dB) grange gits (p)
Half 2714 (2 —2710)p+15 5 [—14,15] 15 180.61 dB [1,2 —2710] 10
Single | 2712 | (2-—272%)2+1% 8 [-126,127] | 127 | 1529dB | [1,2—27%] 23
Double 2~1022 (2 — 2752)p+1023 11 [-1022,1023] | 1023 12318 dB [1,2 —2752] 52
Rules for arithmetic operations:

v' Ordinary number + (40) = +0 v' NaN + Ordinary number = NaN

v Ordinary number + (0) = too v (0) + (0) = NaN () + (+0) = NaN

v (+) X Ordinary number = oo v (0) X (+®) = NaN (00) + (=) = NaN

Examples:

F43DE962 (single): 1111 0100 0011 1101 1110 1001 0110 0010
e + bias = 11101000 = 232 —» e = 232—127 =105

Significand = 1.011 11011110 1001 0110 0010 = 1.4837

X = —1.4837 x 2105 = —6.1085 x 103?

007FADES5 (single): 0000 0000 0111 1111 1010 1101 1110 0101
e + bias = 00000000 = 0 — Denormal number - e = — 126
Significand = 0.1111111 1010 1101 1110 0101 = 0.9975

X = 0.9975x 27126 =1,1725 x 10738
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ADDITION/SUBTRACTION
by = £s:2%, 5, =1.f; by = 5,2, 5, = 1.1,

— by + b, = £5,2% + 5,2%

If e; = e,, we simply shift s, to the right by e; — e, bits. This step is referred to as alignment shift.

€y; — SZ e
522 2 = 2ei—¢ 24
S2 S2
= by by = 5,29 220 = (s £ 2 ) X 29 = X 2°
— S — S
- by — b, = £5,2% +m2€1 = (iSl +m) X 261 =5 % 2¢

= Normalization: Once the operators are aligned, we can add. The result might not be in the format 1.f, so we need to

discard the leading Q’s of the result and stop when a leading 1 is found. Then, we must adjust e, properly, this results in e.

v For example, for addition, when the two operands have similar signs, the resulting significand is in the range [1,4), thus

a single bit right shift is needed on the significant to compensate. Then, we adjust e, by adding 1 to it (or by left shifting

everything by 1 bit). When the two operands have different signs, the resulting significand might be lower than 1 (e.g.:

0.000001) and we need to first discard the leading zeros and then right shift until we get 1.f. We then adjust e, by
adding the same number as the number of shifts to the right on the significand.

Note that overflow/underflow can occur during the addition step as well as due to normalization.

Example: s; = (£, £ —*2) = 00011.1010

2e1—e
First, discard the leading zeros: s3 =11.1010
Normalization: right shift 1 bit: s=s3%x271=111010

Now that we have the normalized significand s, we need to adjust the exponent e, by adding 1 to it: e = e; + 1:
(s3x27 ) x 26+l = gx2¢ =1.1101 x 21

Example: b, = 1.0101 x 25, b, = —1.1110 x 23
1.1110
b =b; + b, =1.0101 x 25 —

57 X 25 =(1.0101 — 0.011110) x 25

1.0101 — 0.011110 = 0.11011. To get this result, we convert the operands to the 2C representation (you can also do
unsigned subtraction if the result is positive). Here, the result is positive. Finally, we perform normalization:
- b=>b; +b, =(0.11011) x 25 = (0.11011 x 21) x 25 x 271 = 1.1011 x 2*

= Subtraction: This operation is very similar.

Example: b, = 1.0101 x 25, b, = 1.111 x 2°
b=b, —b, =1.0101%25—1.111% 25 = (1.0101 — 1.111) x 25

To subtract, we convert to 2C representation: R = 01.0101 — 01.1110 = 01.0101 + 10.0010 = 11.0111. Here, the result
is negative. So, we get the absolute value (|R| = 2€(1.0111) = 0.1001) and place the negative sign on the final result:
- b=bhb, —b, =—(0.1001) x 25

Example:
v X =50DAD000 - DOFADO0O:
50DAD000: 0101 0000 1101 1010 1101 0000 0000 0000
e + bias = 10100001 =161 » e =161 —127 = 34 Significand = 1.10110101101
50DAD000 = 1.10110101101 x 234

DOFADOOO: 1101 0000 1111 1010 1101 0000 0000 0O0O0O
e + bias = 10100001 = 161 > e = 161 — 127 = 34 Significand = 1.11110101101
DOFAD000 = —1.11110101101 x 234

DRI T il i
X =1.10110101101 x 23* + 1.11110101101 x 23* (unsigned addition) S FTIIIITSSS
1.10110101101+
X =11.1010101101 x 234 = 1.11010101101 x 23° l 1.1 110101101
e + bias =35+ 127 =162 = 10100010
X = 0101 0001 0110 1010 1101 0000 0000 0000 = 516AD000 11.10101011010
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Example:

v X =60A10000 + C2F97000:
60A10000: 0110 0000 1010 0001 0000 0000 0000 0000
e + bias = 11000001 =193 5 e =193 — 127 = 66 Significand = 1.0100001
60A10000 = 1.0100001 x 266

C2F97000: 1100 0010 1111 1001 0111 0000 0000 0000
e + bias = 10000101 = 133 > e =133 -127 =6 Significand = 1.11110010111
C2F97000 = —1.11110010111 x 2°

X =1.0100001 x 266 — 1.11110010111 x 26

X =1.0100001 x 266 — % X

Representing the division by 2°° requires more than p + 1 = 24 bits. Thus, we can approximate the 2" operand with 0.

266

X =1.0100001 x 266
X = 0110 0000 1010 0001 0000 0000 0000 0000 = 60A10000

FLOATING POINT ADDER/SUBTRACTOR

e, e,: biased exponents. Note that |e; — e, | is equal to the subtraction of the unbiased exponents.

U_ABS_SIGN: This block computes |e; — e,|. It also generates the signal sm.
e, e, €[0,28 —1] > e; —e, € [-(2F —1),2E —1],|e; — e,] €[0,2F — 1] .

vV oezeosm=0,ep=eyfi=fofy = fi by =byby, = by

vV e <e;—-sm=1lep=eyfi=fi.fy = foby =b, b, =b,

Denormal numbers: They occur if e; = 0 or e, = 0:
‘/61:0_)b1:0.31¢0_)b1:1. \/e2=0—>b2=0.62¢0—>b2=1.

SWAP blocks: In floating point addition/subtraction, we usually require alignment shift: one operator (called s,) is divided
by 2le1=¢:I, while the other (called s,) is not divided.

v First SWAP block: It generates s, and s, out of s; and s,. That way we only feed s, to the barrel shifter.

v Second SWAP block: We execute 4 + B. For proper subtraction, we must have the minuend ¢, (either s, or —=-—) on

2le1—ezl

the left hand side, and the subtrahend t, (either s, or ﬁ) on the right hand side. This blocks generates t, and t,.

sm ep Sy Sy ty t,
S2
e =e; 0 €1 s =by.fa s1=bi.fi S1 Sler—e]
S1
e; <e; 1 €2 s1=by.fi S2 =ba.fo Sler—el S2

Barrel shifter 2-': This circuit performs alignment of s,, where we always shift to the right by |e; — e,| bits.

SM to 2C: Sign and magnitude to 2's complement converter. If the sign (sgi, sgz) is 0, then only a 0 is appended to the
MSB. If the sign is 1, we get the negative number in 2C representation. Output bit-width: P + 2 bits.

Main adder/subtractor: This circuit operates in 2C arithmetic. The figure is not detailed: we first must sign-extend the
(P + 2)-bit operands to P + 3 bits.
Input operands e [—2P*1 + 1,2P*1 — 1], Output result e [—2F*2 4 2,2P+2 — 2].

U_ABS block: It takes the absolute value of a number represented in 2C arithmetic. The output is provided as an unsigned
number. The absolute value < [0, 2°*2 — 2], this only requires P + 2 bits in unsigned representation.

Leading Zero Detector (LZD): This circuit outputs a number that indicates the amount of shifting required to normalize
the result of the main adder/subtractor. It is also used to adjust the exponent. This circuit is commonly implemented using
a priority encoder. result € [—1,p]. The result is provided as a sign and magnitude.

result output sign Actions
[0, p] sh e [0,p] 0 The barrel shifter needs to shift to the left by sh bits.
’ ’ Exponent adder/subtractor needs to subtract sh from the exponent ep.
The barrel shifter needs to shift to the right by 1 bit.
Exponent adder/subtractor needs to add 1 to the exponent ep.

-1 sh=1 1
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Exponent adder/subtractor: The figure is not detailed. This circuit operates in 2C arithmetic; as the input operands are
unsigned, we zero-extend to E + 1 bits. Note that for ordinary numbers, ep € [1,2F — 2]. The (E + 1)-bit result (biased
exponent) cannot be negative: at most, we subtract p from ep, or add 1. Thus, we use the unsigned portion: E bits (LSBs).

Barrel shifter 2i: This performs normalization of the final summation. We shift to the left (from 0 to P bits) or to the right
(1 bit). The normalization step might incur in truncation of the LSBs.

This circuit works for ordinary numbers.

v
v

v

v

NaN, +oo: not considered.

Denormal numbers: not implemented: this would require |e; — e,| = [1 —e,| when e; =0, or |e; — 1] when e, = 0. But
we implement A + B when A =0,B=0,A=B =0.

If A=0or B =0, then s, = 0 (barrel shifter input). So, the incorrect |e, — e,| does not matter; ep will also be correct.
As for the biased exponent ¢, if t; + t, = 0, then A + B = 0, and we must make e = 0 (we use a multiplexer here).
After normalization, the unbiased e might be 2 — 1. This indicates overflow, but we would need to make f = 0. We do
not implement this, so overflow is not detected.

Typical cases:

v
v
v

Half Precision: E = 5, P =10.
Single Precision: E = 8, P = 23.
Double Precision: E = 11, P = 52,

i e, e, f, f add/sub
I B P PL SWAP
| L P
| U_ABS_SIGN j—>\ o 1] —Aa—9o S{o 1]
ep PL PL
! by, fx by_,) fy
A B B P+1] P+]
32 32 | Sx 1 Sy
! E, les—eyl g
add/sub FP ' Sx
0: + add/sub | €1 K P+1L 2les=eal P+l
1: - | E,/ E% P
32 | V SWAP
| IS s w—Y AN WO T |
! | e # 0| | e,# 0|
s : b1 b bz 51 or s 5—2 or s
! —¢—+ 2lei—ez| 1 ty t, 2ler—es| 2
32 bits Loosm | 1 9[ o 1/ P+ P+l
A £ | U s, [SMtd  [SMEdl_sg,
B [s9 | bx by 2C 2C
: P+2|, P+2)
S [sg] e[ f |
; U g fe————
| wss Pk
E U_ABS
P+2), bybg.b_1b_y. . .b_,
E LZD Q
| dir -
| 21
pr2| 01.d_yd_5...d_p
: [ /3 s
! P+2 0
I +
! g JV(Q % Erex
[a=0]-[T 0/
E P// d—ld—Z .o .d_p
e f
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MULTIPLICATION
b1 = islzel, bz = iSZZeZ

> by X by = (£5,2%) X (£5,2%) = £(s; X 55)2&te2
Note that (for ordinary numbers): s = (s; X s,) € [1,4). The result might require normalization.

Example:
b, = 1.100 x 22, b, = —1.011 x 2%,
b =by x b, = —(1.100 x 1.011) x 25 = —(10,0001) x 2,

Normalization of the result: b = —(10,0001 x 2~1) x 27 = —(1,00001) x 27,

Note that if the multiplication requires more bits than allowed by the representation (e.g.: 32, 64 bits), we have to truncate
or round. It is also possible that overflow/underflow might occur due to large/small exponents and/or multiplication of
large/small numbers.

Examples:

v' X =7A09D300 x OBEEF000:
7A09D300: 0111 1010 0000 1001 1101 0011 0000 0000
e + bias = 11110100 = 244 » e = 244 — 127 = 117 Significand = 1.00010011101001100000000
72090300 = 1.000100111010011 x 2117

OBEEFO000: 0000 1011 1110 1110 1111 0000 0000 0000
e + bias = 00010111 =23 > e =23 —-127 = -104 Significand = 1.11011101111000000000000
0BEEF000 = 1.11011101111 x 27104

X =1.000100111010011 x 2117 x 1.11011101111 x 27104
X =10.00000010100011010111111101 x 23 = 1.000000010100011010111111101 X 21* = 1.6466 x 10*
e + bias = 14 + 127 = 141 = 10001101

X = 0100 0110 1000 0000 1010 0011 0101 1111 = 4680A35F (four bits were truncated)

v' X =0B09A000 x 8FACC000:
0B092000: 0000 1011 0000 1001 1010 0000 0000 0000
e + bias = 00010110 = 22 » e =22 — 127 = -105 Significand = 1.0001001101
0B092000 = 1.0001001101 x 27105

8FACC000: 1000 1111 1010 1100 1100 0000 0000 0000
e + bias = 00011111 =31->e =31—-127 =-96 Significand = 1.010110011
OFACE000 = 1.010110011 x 2%

X =1.0001001101 x 27195 x —1,010110011 x 27°¢ = —1.0111001101111010111 x 27201 = —0 x 27126
e + bias = —201+127=-74<0

Here, there is underflow (not even denormalized numbers different than zero can represent it). Then X« — 0.
X = 1000 0000 0000 0000 0000 0000 0000 0000 = 80000000

v X =7A09D300 x 4D080000:
7A09D300: 0111 1010 0000 1001 1101 0011 0000 0000
e + bias = 11110100 = 244 » e = 244 — 127 = 117 Significand = 1.000100111010011
7090300 = 1.000100111010011 x 2117

4D080000: 0100 1101 0000 1000 0000 0000 0000 0000
e + bias = 10011010 = 154 » e = 154 — 127 = 27 Significand = 1.0001
4D080000 = 1.0001 x 227

X =1.000100111010011 x 2117 x 1.0001 x 227 = 1.0010010011100000011 x 2144
e + bias = 144 4+ 127 = 271 > 254

Here, there is an overflow. The value X is assigned to +oo.
X = 0111 1111 1000 1000 0000 0000 0000 0000 = 7F800000
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DIVISION
b1 = islzel, bz = iSZZeZ

b; 15,29 51
- —_—= =4+ -—-2617¢€
bz iSZZQZ _SZ

Note that (for ordinary numbers): s = (5—1) € (1/2,2). The result might require normalization.

S2

Example:
by = 1.100 x 22, b, = —1.011 x 2*

by  1100x2> 1100 __,

- — = = -
b, —1.011x 24 1.011
1.100,

Tom unsigned division, here we can include as many fractional bits as we want.

With x = 4 (and a = 0) we have:
11000000

o1l = 11000000 = 10101(1011) + 11

Q; = 1,0101,R; = 00,0011

If the result is not normalized, we need to normalized it. In this example, we do not need to do this.

b,  1.100 x 22 L0101 x 2-2
- = 1,
b, —1.011x2*

Example
v' X =49742000 + 40490000:
49742000: 0100 1001 0111 0100 0010 0000 0000 0000
e + bias = 10010010 = 146 » e = 146 — 127 = 19 Significand = 1.11101000010000000000000
497420000 = 1.1110100001 x 21°

40490000: 0100 0000 0100 1001 0000 0000 0000 0000
e + bias = 10000000 =128 e =128—-127=1 Significand = 1.10010010000000000000000
0BEEF000 = 1.1001001 x 2!

_1.1110100001 x 2%
~1.1001001 x 21

0000000000100110110
Alignment:
11001001000 J 1111010000100000000 11110100001 _ 1.1110100001 _ 11110100001
11001001000} || 11001001 1.1001001000 _ 11001001000
101011001000
1111010000100000000
11001001000 Append x = 8 zeros: —— o oo
100100000000 o
11001001000 Integer division
— Q = 100110110, R = 1011101000 - Qf = 1.00110110
101011100000
11001001000
100100110000
11001001000
10111010000

19
Thus: X = % =1.0011011 x 218 = 1.2109375 x 218 = 317440

e + bias =18 + 127 = 145 = 10010001

X = 0100 1000 1001 1011 0000 0000 0000 0000 = 489B0000
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FLOATING POINT MULTIPLIER AND DIVIDER

= Multiplier: An unsigned multiplier is required. If we use a sequential multiplier, an FSM is required to control the dataflow.
v" We need to add the unbiased exponents: ep = e, + e,. Here, a simple unsigned adder suffices. Since this operation adds
2 X bias to ep, we subtract bias from the final adjusted exponent ex.
v" The multiplier will require 2P+2 bits. Here, we need to truncate to P+2 bits.

= Divider: An unsigned divider is required. If we use a sequential divider, an FSM is required to control the dataflow.
v We need to subtract the unbiased exponents: ep = e; — e,. This requires us to operate in 2C arithmetic. Since this
operation gets rid of the bias, we need to add the bias = 25~ — 1 to the final adjusted exponent ex.
v" The divider can include any number of extra fractional bits. We use P fractional bits of precision.

sg1 S92 & € fi f sgq sg; & fy f
E E P P E E P P
h P+1 P+1 P+1 P+1
E+1/ S4 S E+J, $4 S,
unsigned | P signed|ep

DIVIDER

with P
fractional bits

P2 bibo.b_1b_y. . .b_y,

P+2L b.by.b_1b_,. .. b "} by.b_1b_y...b

LZD LZD

e
+
X

y peaf, 01.d_yd_y. .., }7 et 1.d_qd_,...d_,
__# s - s
E+1l bias E+1} bias
ex ¢ ex ¢
. 7
Ejy( Pl d_sd_;. .. d_, E Pl dsd_y. .. d,

sg e f sg e f

FP MULTIPLIER FP DIVIDER
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